
Clarifying some formulae from D59-2

Pepetmurri, 181228

In D59-2 (1967) there appear some formulae (equations (12) below in this paper)

which deserve a close examination. That is what we will do here.

Our mathematical language will be that of vector spaces (typically n-dimensional), on

the real numbers, with Euclidean or Lorentzian metrics.

1 Euclidean space

Consider the Euclidean n-dimensional vector space. The notation for vectors will be

~u = (u1, u2, ...un) .

With a specific choice of the basis of the vector space (orthonormal basis), the Euclidean

metric is given by the identity matrix: Diagonal (+1,+1, ...,+1) , so that the scalar

product of two vectors is

(~u · ~v) = u1v1 + u2v2 + · · ·+ unvn , (1)

and the norm of a vector

‖ ~u ‖≡
√

(~u · ~u) =
√
u21 + u22 + · · ·+ u2n . (2)

We will only allow changes of basis (that is, changes of reference frames, implying coor-

dinate transformations) of the vector space such that keep the orthonormality condition,

thus keeping the metric with the same expression Diagonal (+1,+1, ...,+1). This means

that the changes of basis are restricted to rotations and parity transformations. Since the

metric is then form invariant, the scalar product, which is by construction an invariant

–we do not enter into details here–, will always be realized with the same expression (1).

Consider nonvanishing vectors ~u and ~v. One can prove in this Euclidean space the

Cauchy-Schwartz inequality

|(~u · ~v)| ≤‖~u‖ ‖~v‖ , (3)

where by |(~u ·~v)| we mean the absolute value of the scalar product (~u ·~v). The proof goes

as follows,

0 ≤ ‖ ~u

‖~u‖
± ~v

‖~v‖
‖2= ‖ ~u

‖~u‖
‖2 + ‖ ~v

‖~v‖
‖2 ± 2

(~u · ~v)

‖~u‖ ‖~v‖

= 1 + 1 ± 2
(~u · ~v)

‖~u‖ ‖~v‖
= 2

(
1 ± (~u · ~v)

‖~u‖ ‖~v‖
)
, (4)
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which implies,

1± (~u · ~v)

‖~u‖ ‖~v‖
≥ 0 ,

that is,

‖~u‖ ‖~v‖ ± (~u · ~v) ≥ 0 ,

which is a statement equivalent to (3). The equality in (3) is only realized if ~u and ~v are

parallel, that is, when they are linear combination of each other.

2 Minkowski spacetime

Minkowski spacetime is introduced in physics in the context of special relativity, and

has the distinguishing feature of incorporating a “time axis” (as a matter of fact, many

directions can be taken as the time axis). In a suitable, orthonormal basis, we choose the

first coordinate to correspond to the time coordinate, the other coordinates corresponding

to spatial coordinates. We will use capital letters like U, V etc., for the notation of vectors,

with components U = (u0, u1, ..., un) ≡ (u0, ~u) (we consider here a (n + 1)-dimensional

spacetime) etc. The metric in this case is called Lorentzian and, again in an orthonormal

basis, it is written as Diagonal (−1,+1, ...,+1). Notice the minus sign in the first, time

component. Our conventions imply that we use physical units for which the speed of light

has the value c = 1. The scalar product is now

(U · V ) = −u0v0 + u1v1 + u2v2 + · · ·+ unvn ≡ −u0v0 + (~u · ~v) , (5)

Similarly to the Euclidean case, we will only allow changes of basis that keep the

orthonormality condition. This means that the changes of basis are restricted to Lorentz

transformations, the continuous ones being rotations and boosts, the discrete ones being

parity and time-reversal transformations. Under these changes of basis, the Lorentzian

scalar product, which is an invariant, will be written always with the same expression (5).

In Minkowski spacetime the square of the norm

U2 ≡ (U · U) = −u20 + u21 + u22 + · · ·+ u2n (6)

can be positive, negative or nil. If U2 > 0 we call the vector U spacelike; if U2 < 0,

timelike; if U2 = 0, lightlike. To put it shortly, a motion associated with a timelike vector

has a velocity below the speed of light, whereas the velocity of a motion associated with

a ligktlike vector has just the speed of light, which is the limiting speed.

The Cauchy-Schwartz inequality is no longer satisfied in general, so we may have pairs

of nonvanishing vectors satisfying (U ·V )2 > U2V 2, or (U ·V )2 < U2V 2, or (U ·V )2 = U2V 2.
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What will distinguish these different situations? Obviously that depends on the choice of

these two vectors U and V . Given two vectors along different directions, we can define a

plane, that is, a 2-dimensional vector space spanned by the linear combinations of U and

V . Let is discuss the different types of such planes in Minkowski spacetime.

3 2-dimensional planes in Minkowski spacetime

There are three types of 2-dimensional planes in Minkowski spacetime, according as to

whether they contain an infinite number of timelike vectors (Minkowskian plane), only

one –and its linear combinations– (Singular plane), or no timelike vectors at all (Euclidean

plane). Here are the details.

3.1 The Euclidean plane

The plane spanned by vectors U and V is Euclidean when all their linear combinations

are spacelike vectors.

In this case one can show that there are, in the Minkowski spacetime, timelike vectors

which are simultaneously orthogonal to U and V , that is, orthogonal to the plane. Pick

one of these timelike vectors, let’s call it Z, and normalize it so that Z2 = −1. A Lorentz

transformation brings this vector to the expression Z = (1, 0..., 0) ≡ (1,~0). Then U and

V , being orthogonal to Z, must be –in this basis– of the form U = (0, ~u) , V = (0, ~v), thus

implying that (U ·V ) = (~u ·~v) in this basis. That is, for vectors in the Euclidean plane, we

are realizing an Euclidean scalar product, even though they are in an ambient Minkowski

spacetime. For these vectors in the Euclidean plane, the inequality (3) is written now

(U · V )2 ≤ U2V 2. (7)

The relevant observation is that the values of (U · V ) , U2 , V 2, are invariant and thus

inequality (7) does not depend on the specific coordinatization used to prove it. Thus,

for these vectors U and V spanning an Euclidean 2d plane, inequality (7) holds because

the two members of the inequality are invariant under changes of reference frame. In an

arbitrary frame, (U · V ) is the usual scalar product in the ambient Minkowski spacetime

(5), but as said it essentially realizes an Euclidean scalar product. Note also that the

equality in (7) is only achieved when U and V are parallel, that is, when they are linear

combination of each other.

3.2 The Minkowskian plane

The plane spanned by vectors U and V has a Minkowskian metric –the restriction on the

plane of the Minkowski metric of the spacetime– when (λU+µV )2 can be positive, negative
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or nil, depending upon the values of the real parameters λ and µ. This means that there

are spacelike, timelike and lightlike vectors in this plane. In fact we can make a Lorentz

transformation such that the metric restricted to this plane becomes Diagonal (−1,+1).

Then we can write in this 2d Minkowski plane, generically, U = (u0, u1), V = (v0, v1),

and we can compute the invariant quantity

(U · V )2 − U2V 2 = (−u0v0 + u1v1)
2 − (−u20 + u21)(−v20 + v21) = (u0v1 − u1v0)2 ≥ 0 ,

which only vanishes when U and V are linear combinations of each other. Thus we have

in this case an inequality which is the reverse of (7). Now it is

(U · V )2 ≥ U2V 2. (8)

3.3 The Singular plane

The Singular plane is a 2d plane tangent to the light cone. This limiting case happens

when all directions obtained by linear combinations of U and V are spacelike except for one

single direction which is lightlike. There are no timelike vectors in this plane. Two vectors

spanning this type of plane are for instance L = (1, 1, 0, ..., 0) , S = (0, 0, 1, 0, ..., 0). Note

that (λL+ µS)2 = µ2 ≥ 0, which only vanishes for µ = 0, meaning that the only lightlike

direction is that along L. Note also that for any U = λL + µS and V = λ′L + µ′S, then

(U · V )2 = U2V 2 always, which means that the concept of angle, as a measure –by way

of the trigonometric functions– of the relative size between both sides of the inequality,

either (7) or (8), makes no sense. In addition, the metric restricted to this plane is singular

(its matrix is not invertible). We will not consider this case in the next section.

With all these preliminary ingredients, we can start talking about angles between

vectors.

4 Angles in the Euclidean space

Angles between vectors in the Euclidean space of section 1 are defined in the conventional

way, with the use of classical trigonometry. The Cauchy-Schwartz inequality (3) holds and

we can define the usual trigonometric functions (cosinus, sinus) of the angle α between

vectors ~u and ~v by

cosα =
(~u · ~v)√
~u2~v2

,

sinα =

√
~v2~u2 − (~u · ~v)2

~u2~v2
, (9)

thus satisfying the usual property cos2 α + sin2 α = 1.
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5 Angles in Minkowski spacetime

Connecting with the results in section 2, we will consider two types of pairs of vectors

U, V , either spanning a 2d Euclidean plane of a 2d Minkowskian plane.

5.1 Angles in the Euclidean plane

As said, two vectors U, V , spanning a 2d Euclidean plane, satisfy (7), and the angle

they form is given through the standard Euclidean construction spelled out in section 3.1,

although –and here is the catch– the scalar product is the Minkowskian one. Again we

use classical trigonometry,

cosα =
(U · V )√
U2V 2

,

sinα =

√
U2V 2 − (U · V )2

U2V 2
, (10)

thus satisfying the usual property cos2 α+sin2 α = 1. Also, when V = U we get cosα = 1

which is α = 0.

5.2 Hyperbolic angles in the Minkowskian plane

The simplest case of a pair of vectors, U, V , that will always identify a Minkowskian plane

is that of two independent timelike vectors. Our focus will be on this case. In addition

we will consider for simplicity that both vectors are future oriented, meaning that their

time components u0, v0, are positive. This ensures that (U · V ) < 0. Now definitions

(10), conveniently modified, are in fact realizing hyperbolic trigonometry. Indeed we are

under the condition (8) and thus
(U · V )2

U2V 2
≥ 1. What we have now is the definition of

the hyperbolic trigonometric functions,

coshα = − (U · V )√
U2V 2

,

sinhα =

√
−U

2V 2 − (U · V )2

U2V 2
(11)

thus satisfying the usual property of hyperbolic trigonometry cosh2 α− sinh2 α = 1. The

minus sign in the right hand side of the first equation in (11) is necesssary because

coshα > 0 whereas (U · V ) < 0. Note that when we take V = U we get coshα = 1 which

is α = 0. Of course these “angles” can not be visualized in the usual, Euclidean way.

Similar considerations and expressions apply if we consider two spacelike vectors in

the Minkowskian plane. In this case we must continue to use hyperbolic trigonometry

because (8) still holds. The minus sign in the espression for coshα may appear or not

depending on the sign of (U · V ).
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6 Making sense of some expressions in D59-2

Let is bring in two expressions from D59-2,

cos θ =
ε(u0v0

λ2
+ u1v1 + u2v2 + · · ·+ unvn)√

(
u20
λ2

+ u21 + u22 + · · ·+ u2n)(
v20
λ2

+ v21 + v22 + · · ·+ v2n)
,

sin θ =

√√√√√√√√ ε
(

1
λ2
∑n
i=1

∣∣∣∣∣∣ u0 ui

v0 vi

∣∣∣∣∣∣
2

+ 1
2

∑n
i,j=1

∣∣∣∣∣∣ ui uj

vi vj

∣∣∣∣∣∣
2 )

(
u20
λ2

+ u21 + u22 + · · ·+ u2n)(
v20
λ2

+ v21 + v22 + · · ·+ v2n)
, (12)

with λ real or imaginary and with ε = ±1.

We will make sense of these expressions in the light of our previous presentation.

Take the expression common in all denominators in (12), (
u20
λ2

+ u21 + u22 + · · ·+ u2n).

Since we use units for which the speed of light c = 1, the parameter λ that can be real

or imaginary is translated in our language to λ = 1 or λ = i.

When the parameter λ has the value λ = 1, (12) correspond to computations done in

Euclidean space, with ε = 1. For instance the expression (
u20
λ2

+u21 +u22 + · · ·+u2n) becomes

the square of the Euclidean norm (2)

When λ = i (the imaginary unit, so that λ2 = −1), they correspond to computations

done in Minkowski spacetime and ε can be either +1 or −1. The interpretation of the

expressions in the denominators of (12) is clear. Take for instance (
u20
λ2

+u21+u22+ · · ·+u2n).

Now for λ = i it is the square of the Minkowskian norm (6).

On the other hand, and only in the case of Minkowski spacetime, ε = +1 corresponds

to considering the vectors U and V as spanning an Euclidean plane, section 3.1, in which

case they satisfy (7) and we can apply the standard trigonometry. The case ε = −1

corresponds to considering the vectors U and V as spanning a Minkowskian plane, section

3.2. In such case, equations (8) apply and we use hiperbolic trigonometry, (11).

Finally, to complete the agreements betweeen (9), (11) and (12), we should prove the

equality ( 1

λ2

n∑
i=1

∣∣∣∣∣∣ u0 ui

v0 vi

∣∣∣∣∣∣
2

+
1

2

n∑
i,j=1

∣∣∣∣∣∣ ui uj

vi vj

∣∣∣∣∣∣
2 )

= U2V 2 − (U · V )2 ,

where the right hand side is interpreted with λ = 1 in the Euclidean space and with λ = i

in Minkowski spacetime.

In the Euclidean space case, λ = 1, this equality is just the well-kown Lagrange

identity, which holds both for real and for complex numbers. We will prove it directly in

Minkowski spacetime (λ = i), which is just a particular case.

(
−

n∑
i=1

∣∣∣∣∣∣ u0 ui

v0 vi

∣∣∣∣∣∣
2

+
1

2

n∑
i,j=1

∣∣∣∣∣∣ ui uj

vi vj

∣∣∣∣∣∣
2 )
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= −
n∑
i=1

(u0vi − v0ui)2 +
1

2

n∑
i,j=1

(uivj − viuj)2

= −u20~v2 − v20~u2 + 2u0v0(~u · ~v) + ~u2~v2 − (~u · ~v)2

= −u20~v2 − v20~u2 + ~u2~v2 + u20v
2
0 − u20v20 − (~u · ~v)2 + 2u0v0(~u · ~v)

= (−u20 + ~u2)(−v20 + ~v2)− (−u0v0 + (~u · ~v))2

= U2V 2 − (U · V )2 . (13)

Sumarizing, we see that expressions (12) encompass the possibilities described in (9),

(10) and (11):

Euclidean space.

When λ = 1 we must also take ε = 1 and (12) is exactly (9), that is, Euclidean

trigonometry -with an irrelevant change of notation for the the indices of the vector

components.

Euclidean plane in Minkowski spacetime.

When λ = i and ε = 1, (12) is just (10), and we are realizing Euclidean trigonometry.

Minkowskian plane in Minkowski spacetime.

When λ = i and ε = −1 , (12) becomes (11) , which is hyperbolic trigonometry.

7 Hyperplanes in Minkowski spacetime

To every vector U in Minkowski spacetime, there is associated a codimension one subspace

(that is, a n-dimensional subspace if Minkowski spacetime has n+ 1 dimensions) defined

by the vectors orthogonal to U . We denote this subspace as HU .

HU = {V ∈ Minkowski, (V · U) = 0} .

We may add a fixed vector to the elements of HU to produce an affine subspace, whose

elements are points and such that the substraction of the coordinates of two points gives a

vector in HU . Thus to every HU there is associated a family of affine subspaces (including

HU itself), which we call hyperplanes and are parallel to HU . The angle between two

hyperplanes HU and HV is defined as the angle between U and V .

Here we will only consider the case when U and V span an Euclidean 2d plane (see

sections 3.1, 5.1). In this case, if the ambient Minkowski spacetime has n+ 1 dimensions,

HU and HV instersect along a Minkowski subspacetime of n−1 dimensions. The trigono-

metric functions of the angle α between HU and HV are given by (10). One can define a

phase parameter R as R = (eiα)2 or, what is the same, α =
1

2 i
log(R). In particular, the

orthogonality expressed by α =
π

2
is equivalently expressed by R = −1.
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